Double-flow focused liquid injector for efficient serial femtosecond crystallography

نویسندگان

  • Dominik Oberthuer
  • Juraj Knoška
  • Max O. Wiedorn
  • Kenneth R. Beyerlein
  • David A. Bushnell
  • Elena G. Kovaleva
  • Michael Heymann
  • Lars Gumprecht
  • Richard A. Kirian
  • Anton Barty
  • Valerio Mariani
  • Aleksandra Tolstikova
  • Luigi Adriano
  • Salah Awel
  • Miriam Barthelmess
  • Katerina Dörner
  • P. Lourdu Xavier
  • Oleksandr Yefanov
  • Daniel R. James
  • Garrett Nelson
  • Dingjie Wang
  • George Calvey
  • Yujie Chen
  • Andrea Schmidt
  • Michael Szczepek
  • Stefan Frielingsdorf
  • Oliver Lenz
  • Edward Snell
  • Philip J. Robinson
  • Božidar Šarler
  • Grega Belšak
  • Marjan Maček
  • Fabian Wilde
  • Andrew Aquila
  • Sébastien Boutet
  • Mengning Liang
  • Mark S. Hunter
  • Patrick Scheerer
  • John D. Lipscomb
  • Uwe Weierstall
  • Roger D. Kornberg
  • John C. H. Spence
  • Lois Pollack
  • Henry N. Chapman
  • Saša Bajt
چکیده

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double-flow focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices [corrected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA

X-ray free-electron lasers (XFELs) have opened new opportunities for time-resolved X-ray crystallography. Here a nanosecond optical-pump XFEL-probe device developed for time-resolved serial femtosecond crystallography (TR-SFX) studies of photo-induced reactions in proteins at the SPring-8 Angstrom Compact free-electron LAser (SACLA) is reported. The optical-fiber-based system is a good choice f...

متن کامل

Serial femtosecond crystallography of soluble proteins in lipidic cubic phase

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP-SFX method has recently been introduced in which microcrystals...

متن کامل

Time-resolved structural studies with serial crystallography: A new light on retinal proteins

Structural information of the different conformational states of the two prototypical light-sensitive membrane proteins, bacteriorhodopsin and rhodopsin, has been obtained in the past by X-ray cryo-crystallography and cryo-electron microscopy. However, these methods do not allow for the structure determination of most intermediate conformations. Recently, the potential of X-Ray Free Electron La...

متن کامل

Liquid sample delivery techniques for serial femtosecond crystallography.

X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017